

 Navigation

 	
 index

 	plone.app.testing 4.2.1 documentation

Welcome to plone.app.testing’s documentation!

Introduction

Table of contents

	Welcome to plone.app.testing’s documentation!

	Introduction
	Compatibility

	Installation and usage

	Layer reference
	Plone site fixture

	Integration and functional testing test lifecycles

	Plone integration testing

	Plone functional testing

	Plone ZServer

	Plone FTP server

	Helper functions
	Plone site context manager

	User management

	Product and profile installation

	Component architecture sandboxing

	Global state cleanup

	Layer base class

	Common test patterns
	Basic content management

	Searching

	User management

	Permissions and roles

	Workflow

	Properties

	Installing products and extension profiles

	Traversal

	Simulating browser interaction
	Debugging tips

	Comparison with ZopeTestCase/PloneTestCase

	Indices and tables

plone.app.testing provides tools for writing integration and functional
tests for code that runs on top of Plone. It is based on plone.testing [http://pypi.python.org/pypi/plone.testing].
If you are unfamiliar with plone.testing, the concept of layers, or the
zope.testing [http://pypi.python.org/pypi/zope.testing] testrunner, please take a look at the the plone.testing
documentation. In fact, even if you are working exclusively with Plone, you
are likely to want to use some of its features for unit testing.

In short, plone.app.testing includes:

	A set of layers that set up fixtures containing a Plone site, intended for
writing integration and functional tests.

	A collection of helper functions, some useful for writing your own layers
and some applicable to tests themselves.

	A convenient layer base class, extending plone.testing.Layer, which
makes it easier to write custom layers extending the Plone site fixture,
with proper isolation and tear-down.

	Cleanup hooks for zope.testing.cleanup to clean up global state found
in a Plone installation. This is useful for unit testing.

Compatibility

plone.app.testing 4.x works with Plone 4 and Zope 2.12. It may work with
newer versions. It will not work with earlier versions. Use
plone.app.testing 3.x for Plone 3 and Zope 2.10.

Installation and usage

To use plone.app.testing in your own package, you need to add it as a
dependency. Most people prefer to keep test-only dependencies separate, so
that they do not need to be installed in scenarios (such as on a production
server) where the tests will not be run. This can be achieved using a
test extra.

In setup.py, add or modify the extras_require option, like so:

extras_require = {
 'test': [
 'plone.app.testing',
]
},

This will also include plone.testing, with the [z2], [zca] and
[zodb] extras (which plone.app.testing itself relies on).

Please see the plone.testing [http://pypi.python.org/pypi/plone.testing] documentation for more details about how to
add a test runner to your buildout, and how to write and run tests.

Layer reference

This package contains a layer class,
plone.app.testing.layers.PloneFixture, which sets up a Plone site fixture.
It is combined with other layers from plone.testing [http://pypi.python.org/pypi/plone.testing] to provide a number of
layer instances. It is important to realise that these layers all have the
same fundamental fixture: they just manage test setup and tear-down
differently.

When set up, the fixture will:

	Create a ZODB sandbox, via a stacked DemoStorage. This ensures
persistent changes made during layer setup can be cleanly torn down.

	Configure a global component registry sandbox. This ensures that global
component registrations (e.g. as a result of loading ZCML configuration)
can be cleanly torn down.

	Create a configuration context with the disable-autoinclude feature
set. This has the effect of stopping Plone from automatically loading the
configuration of any installed package that uses the
z3c.autoinclude.plugin:plone entry point via z3c.autoinclude [http://pypi.python.org/pypi/z3c.autoinclude]. (This
is to avoid accidentally polluting the test fixture - custom layers should
load packages’ ZCML configuration explicitly if required).

	Install a number of Zope 2-style products on which Plone depends.

	Load the ZCML for these products, and for Products.CMFPlone, which in
turn pulls in the configuration for the core of Plone.

	Create a default Plone site, with the default theme enabled, but with no
default content.

	Add a user to the root user folder with the Manager role.

	Add a test user to this instance with the Member role.

For each test:

	The test user is logged in

	The local component site is set

	Various global caches are cleaned up

Various constants in the module plone.app.testing.interfaces are defined
to describe this environment:

	Constant
	Purpose

	PLONE_SITE_ID
	The id of the Plone site object inside the Zope
application root.

	PLONE_SITE_TITLE
	The title of the Plone site

	DEFAULT_LANGUAGE
	The default language of the Plone site (‘en’)

	TEST_USER_ID
	The id of the test user

	TEST_USER_NAME
	The username of the test user

	TEST_USER_PASSWORD
	The password of the test user

	TEST_USER_ROLES
	The default global roles of the test user -
(‘Member’,)

	SITE_OWNER_NAME
	The username of the user owning the Plone site.

	SITE_OWNER_PASSWORD
	The password of the user owning the Plone site.

All the layers also expose a resource in addition to those from their
base layers, made available during tests:

	portal

	The Plone site root.

Plone site fixture

	Layer:
	plone.app.testing.PLONE_FIXTURE

	Class:
	plone.app.testing.layers.PloneFixture

	Bases:
	plone.testing.z2.STARTUP

	Resources:
	

This layer sets up the Plone site fixture on top of the z2.STARTUP
fixture.

You should not use this layer directly, as it does not provide any test
lifecycle or transaction management. Instead, you should use a layer
created with either the IntegrationTesting or FunctionalTesting
classes, as outlined below.

Integration and functional testing test lifecycles

plone.app.testing comes with two layer classes, IntegrationTesting
and FunctionalTesting, which derive from the corresponding layer classes
in plone.testing.z2.

These classes set up the app, request and portal resources, and
reset the fixture (including various global caches) between each test run.

As with the classes in plone.testing, the IntegrationTesting class
will create a new transaction for each test and roll it back on test tear-
down, which is efficient for integration testing, whilst FunctionalTesting
will create a stacked DemoStorage for each test and pop it on test tear-
down, making it possible to exercise code that performs an explicit commit
(e.g. via tests that use zope.testbrowser).

When creating a custom fixture, the usual pattern is to create a new layer
class that has PLONE_FIXTURE as its default base, instantiating that as a
separate “fixture” layer. This layer is not to be used in tests directly,
since it won’t have test/transaction lifecycle management, but represents a
shared fixture, potentially for both functional and integration testing. It
is also the point of extension for other layers that follow the same pattern.

Once this fixture has been defined, “end-user” layers can be defined using
the IntegrationTesting and FunctionalTesting classes. For example:

from plone.testing import Layer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting, FunctionalTesting

class MyFixture(Layer):
 defaultBases = (PLONE_FIXTURE,)

 ...

MY_FIXTURE = MyFixture()

MY_INTEGRATION_TESTING = IntegrationTesting(bases=(MY_FIXTURE,), name="MyFixture:Integration")
MY_FUNCTIONAL_TESTING = FunctionalTesting(bases=(MY_FIXTURE,), name="MyFixture:Functional")

See the PloneSandboxLayer layer below for a more comprehensive example.

Plone integration testing

	Layer:
	plone.app.testing.PLONE_INTEGRATION_TESTING

	Class:
	plone.app.testing.layers.IntegrationTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE

	Resources:
	portal (test setup only)

This layer can be used for integration testing against the basic
PLONE_FIXTURE layer.

You can use this directly in your tests if you do not need to set up any
other shared fixture.

However, you would normally not extend this layer - see above.

Plone functional testing

	Layer:
	plone.app.testing.PLONE_FUNCTIONAL_TESTING

	Class:
	plone.app.testing.layers.FunctionalTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE

	Resources:
	portal (test setup only)

This layer can be used for functional testing against the basic
PLONE_FIXTURE layer, for example using zope.testbrowser.

You can use this directly in your tests if you do not need to set up any
other shared fixture.

Again, you would normally not extend this layer - see above.

Plone ZServer

	Layer:
	plone.app.testing.PLONE_ZSERVER

	Class:
	plone.testing.z2.ZServer

	Bases:
	plone.app.testing.PLONE_FUNCTIONAL_TESTING

	Resources:
	portal (test setup only)

This is layer is intended for functional testing using a live, running HTTP
server, e.g. using Selenium or Windmill.

Again, you would not normally extend this layer. To create a custom layer
that has a running ZServer, you can use the same pattern as this one, e.g.:

from plone.testing import Layer
from plone.testing import z2
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import FunctionalTesting

class MyFixture(Layer):
 defaultBases = (PLONE_FIXTURE,)

 ...

MY_FIXTURE = MyFixture()
MY_ZSERVER = FunctionalTesting(bases=(MY_FIXTURE, z2.ZSERVER_FIXTURE), name='MyFixture:ZServer')

See the description of the z2.ZSERVER layer in plone.testing [http://pypi.python.org/pypi/plone.testing]
for further details.

Plone FTP server

	Layer:
	plone.app.testing.PLONE_FTP_SERVER

	Class:
	plone.app.testing.layers.FunctionalTesting

	Bases:
	plone.app.testing.PLONE_FIXTURE
plone.testing.z2.ZSERVER_FIXTURE

	Resources:
	portal (test setup only)

This is layer is intended for functional testing using a live FTP server.

It is semantically equivalent to the PLONE_ZSERVER layer.

See the description of the z2.FTP_SERVER layer in plone.testing [http://pypi.python.org/pypi/plone.testing]
for further details.

Helper functions

A number of helper functions are provided for use in tests and custom layers.

Plone site context manager

	ploneSite(db=None, connection=None, environ=None)

	Use this context manager to access and make changes to the Plone site
during layer setup. In most cases, you will use it without arguments,
but if you have special needs, you can tie it to a particular database
instance. See the description of the zopeApp() context manager in
plone.testing [http://pypi.python.org/pypi/plone.testing] (which this context manager uses internally) for details.

The usual pattern is to call it during setUp() or tearDown() in
your own layers:

from plone.testing import Layer
from plone.app.testing import ploneSite

class MyLayer(Layer):

 def setUp(self):

 ...

 with ploneSite() as portal:

 # perform operations on the portal, e.g.
 portal.title = u"New title"

Here, portal is the Plone site root. A transaction is begun before
entering the with block, and will be committed upon exiting the block,
unless an exception is raised, in which case it will be rolled back.

Inside the block, the local component site is set to the Plone site root,
so that local component lookups should work.

Warning: Do not attempt to load ZCML files inside a ploneSite
block. Because the local site is set to the Plone site, you may end up
accidentally registering components in the local site manager, which can
cause pickling errors later.

Note: You should not use this in a test, or in a testSetUp() or
testTearDown() method of a layer based on one of the layer in this
package. Use the portal resource instead.

Also note: If you are writing a layer setting up a Plone site fixture,
you may want to use the PloneSandboxLayer layer base class, and
implement the setUpZope(), setUpPloneSite(), tearDownZope()
and/or tearDownPloneSite() methods instead. See below.

User management

	login(portal, userName)

	Simulate login as the given user. This is based on the z2.login()
helper in plone.testing [http://pypi.python.org/pypi/plone.testing], but instead of passing a specific user folder,
you pass the portal (e.g. as obtained via the portal layer resource).

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import TEST_USER_NAME
from plone.app.testing import login

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 login(portal, TEST_USER_NAME)

 ...

	logout()

	Simulate logging out, i.e. becoming the anonymous user. This is equivalent
to the z2.logout() helper in plone.testing [http://pypi.python.org/pypi/plone.testing].

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import logout

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 logout()

 ...

	setRoles(portal, userId, roles)

	Set the roles for the given user. roles is a list of roles.

For example:

import unittest2 as unittest

from plone.app.testing import PLONE_INTEGRATION_TESTING
from plone.app.testing import TEST_USER_ID
from plone.app.testing import setRoles

...

class MyTest(unittest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def test_something(self):
 portal = self.layer['portal']
 setRoles(portal, TEST_USER_ID, ['Manager'])

Product and profile installation

	applyProfile(portal, profileName)

	Install a GenericSetup profile (usually an extension profile) by name,
using the portal_setup tool. The name is normally made up of a package
name and a profile name. Do not use the profile- prefix.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import applyProfile

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 applyProfile(portal, 'my.product:default')

 ...

	quickInstallProduct(portal, productName, reinstall=False)

	Use this function to install a particular product into the given Plone
site, using the portal_quickinstaller tool. If reinstall is
False and the product is already installed, nothing will happen; if
reinstall is True, the product will be reinstalled. The
productName should be a full dotted name, e.g. Products.MyProduct,
or my.product.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import quickInstallProduct

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 quickInstallProduct(portal, 'my.product')

 ...

Component architecture sandboxing

	pushGlobalRegistry(portal, new=None, name=None)

	Create or obtain a stack of global component registries, and push a new
registry to the top of the stack. This allows Zope Component Architecture
registrations (e.g. loaded via ZCML) to be effectively torn down.

If you are going to use this function, please read the corresponding
documentation for zca.pushGlobalRegistry() in plone.testing [http://pypi.python.org/pypi/plone.testing]. In
particular, note that you must reciprocally call popGlobalRegistry()
(see below).

This helper is based on zca.pushGlobalRegistry(), but will also fix
up the local component registry in the Plone site portal so that it
has the correct bases.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import pushGlobalRegistry
from plone.app.testing import popGlobalRegistry

...

class MyLayer(Layer):

 ...

 def setUp(self):

 ...

 with ploneSite() as portal:
 pushGlobalRegistry(portal)

 ...

	popGlobalRegistry(portal)

	Tear down the top of the component architecture stack, as created with
pushGlobalRegistry()

For example:

...

 def tearDown(self):

 with ploneSite() as portal:
 popGlobalRegistry(portal)

Global state cleanup

	tearDownMultiPluginRegistration(pluginName)

	PluggableAuthService “MultiPlugins” are kept in a global registry. If
you have registered a plugin, e.g. using the registerMultiPlugin()
API, you should tear that registration down in your layer’s tearDown()
method. You can use this helper, passing a plugin name.

For example:

from plone.testing import Layer

from plone.app.testing import ploneSite
from plone.app.testing import tearDownMultiPluginRegistration

...

class MyLayer(Layer):

 ...

 def tearDown(self):

 tearDownMultiPluginRegistration('MyPlugin')

 ...

Layer base class

If you are writing a custom layer to test your own Plone add-on product, you
will often want to do the following on setup:

	Stack a new DemoStorage on top of the one from the base layer. This
ensures that any persistent changes performed during layer setup can be
torn down completely, simply by popping the demo storage.

	Stack a new ZCML configuration context. This keeps separate the information
about which ZCML files were loaded, in case other, independent layers want
to load those same files after this layer has been torn down.

	Push a new global component registry. This allows you to register
components (e.g. by loading ZCML or using the test API from
zope.component) and tear down those registration easily by popping the
component registry.

	Load your product’s ZCML configuration

	Install the product into the test fixture Plone site

Of course, you may wish to make other changes too, such as creating some base
content or changing some settings.

On tear-down, you will then want to:

	Remove any Pluggable Authentication Service “multi-plugins” that were added
to the global registry during setup.

	Pop the global component registry to unregister components loaded via ZCML.

	Pop the configuration context resource to restore its state.

	Pop the DemoStorage to undo any persistent changes.

If you have made other changes on setup that are not covered by this broad
tear-down, you’ll also want to tear those down explicitly here.

Stacking a demo storage and component registry is the safest way to avoid
fixtures bleeding between tests. However, it can be tricky to ensure that
everything happens in the right order.

To make things easier, you can use the PloneSandboxLayer layer base class.
This extends plone.testing.Layer and implements setUp() and
tearDown() for you. You simply have to override one or more of the
following methods:

	setUpZope(self, app, configurationContext)

	This is called during setup. app is the Zope application root.
configurationContext is a newly stacked ZCML configuration context.
Use this to load ZCML, install products using the helper
plone.testing.z2.installProduct(), or manipulate other global state.

	setUpPloneSite(self, portal)

	This is called during setup. portal is the Plone site root as
configured by the ploneSite() context manager. Use this to make
persistent changes inside the Plone site, such as installing products
using the applyProfile() or quickInstallProduct() helpers, or
setting up default content.

	tearDownZope(self, app)

	This is called during tear-down, before the global component registry and
stacked DemoStorage are popped. Use this to tear down any additional
global state.

Note: Global component registrations PAS multi-plugin registrations are
automatically torn down. Product installations are not, so you should use
the uninstallProduct() helper if any products were installed during
setUpZope().

	tearDownPloneSite(self, portal)

	This is called during tear-down, before the global component registry and
stacked DemoStorage are popped. During this method, the local
component site hook is set, giving you access to local components.

Note: Persistent changes to the ZODB are automatically torn down by
virtue of a stacked DemoStorage. Thus, this method is less commonly
used than the others described here.

Let’s show a more comprehensive example of what such a layer may look like.
Imagine we have a product my.product. It has a configure.zcml file
that loads some components and registers a GenericSetup profile, making it
installable in the Plone site. On layer setup, we want to load the product’s
configuration and install it into the Plone site.

The layer would conventionally live in a module testing.py at the root of
the package, i.e. my.product.testing:

from plone.app.testing import PloneSandboxLayer
from plone.app.testing import PLONE_FIXTURE
from plone.app.testing import IntegrationTesting

from plone.testing import z2

class MyProduct(PloneSandboxLayer):

 defaultBases = (PLONE_FIXTURE,)

 def setUpZope(self, app, configurationContext):
 # Load ZCML
 import my.product
 self.loadZCML(package=my.product)

 # Install product and call its initialize() function
 z2.installProduct(app, 'my.product')

 # Note: you can skip this if my.product is not a Zope 2-style
 # product, i.e. it is not in the Products.* namespace and it
 # does not have a <five:registerPackage /> directive in its
 # configure.zcml.

 def setUpPloneSite(self, portal):
 # Install into Plone site using portal_setup
 self.applyProfile(portal, 'my.product:default')

 def tearDownZope(self, app):
 # Uninstall product
 z2.uninstallProduct(app, 'my.product')

 # Note: Again, you can skip this if my.product is not a Zope 2-
 # style product

MY_PRODUCT_FIXTURE = MyProduct()
MY_PRODUCT_INTEGRATION_TESTING = IntegrationTesting(bases=(MY_PRODUCT_FIXTURE,), name="MyProduct:Integration")

Here, MY_PRODUCT_FIXTURE is the “fixture” base layer. Other layers can
use this as a base if they want to build on this fixture, but it would not
be used in tests directly. For that, we have crated an IntegrationTesting
instance, MY_PRODUCT_INTEGRATION_TESTING.

Of course, we could have created a FunctionalTesting instance as
well, e.g.:

MY_PRODUCT_FUNCTIONAL_TESTING = FunctionalTesting(bases=(MY_PRODUCT_FIXTURE,), name="MyProduct:Functional")

Of course, we could do a lot more in the layer setup. For example, let’s say
the product had a content type ‘my.product.page’ and we wanted to create some
test content. We could do that with:

from plone.app.testing import TEST_USER_ID
from plone.app.testing import TEST_USER_NAME
from plone.app.testing import login
from plone.app.testing import setRoles

...

 def setUpPloneSite(self, portal):

 ...

 setRoles(portal, TEST_USER_ID, ['Manager'])
 login(portal, TEST_USER_NAME)
 portal.invokeFactory('my.product.page', 'page-1', title=u"Page 1")
 setRoles(portal, TEST_USER_ID, ['Member'])

...

Note that unlike in a test, there is no user logged in at layer setup time,
so we have to explicitly log in as the test user. Here, we also grant the test
user the Manager role temporarily, to allow object construction (which
performs an explicit permission check).

Note: Automatic tear down suffices for all the test setup above. If
the only changes made during layer setup are to persistent, in-ZODB data,
or the global component registry then no additional tear-down is required.
For any other global state being managed, you should write a
tearDownPloneSite() method to perform the necessary cleanup.

Given this layer, we could write a test (e.g. in tests.py) like:

import unittest2 as unittest
from my.product.testing import MY_PRODUCT_INTEGRATION_TESTING

class IntegrationTest(unittest.TestCase):

 layer = MY_PRODUCT_INTEGRATION_TESTING

 def test_page_dublin_core_title(self):
 portal = self.layer['portal']

 page1 = portal['page-1']
 page1.title = u"Some title"

 self.assertEqual(page1.Title(), u"Some title")

Please see plone.testing [http://pypi.python.org/pypi/plone.testing] for more information about how to write and run
tests and assertions.

Common test patterns

plone.testing [http://pypi.python.org/pypi/plone.testing]‘s documentation contains details about the fundamental
techniques for writing tests of various kinds. In a Plone context, however,
some patterns tend to crop up time and again. Below, we will attempt to
catalogue some of the more commonly used patterns via short code samples.

The examples in this section are all intended to be used in tests. Some may
also be useful in layer set-up/tear-down. We have used unittest syntax
here, although most of these examples could equally be adopted to doctests.

We will assume that you are using a layer that has PLONE_FIXTURE as a base
(whether directly or indirectly) and uses the IntegrationTesting or
FunctionalTesting classes as shown above.

We will also assume that the variables app, portal and request are
defined from the relative layer resources, e.g. with:

app = self.layer['app']
portal = self.layer['portal']
request = self.layer['request']

Note that in a doctest set up using the layered() function from
plone.testing, layer is in the global namespace, so you would do e.g.
portal = layer['portal'].

Where imports are required, they are shown alongside the code example. If
a given import or variable is used more than once in the same section, it
will only be shown once.

Basic content management

To create a content item of type ‘Folder’ with the id ‘f1’ in the root of
the portal:

portal.invokeFactory('Folder', 'f1', title=u"Folder 1")

The title argument is optional. Other basic properties, like
description, can be set as well.

Note that this may fail with an Unauthorized exception, since the test
user won’t normally have permissions to add content in the portal root, and
the invokeFactory() method performs an explicit security check. You can
set the roles of the test user to ensure that he has the necessary
permissions:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

setRoles(portal, TEST_USER_ID, ['Manager'])
portal.invokeFactory('Folder', 'f1', title=u"Folder 1")

To obtain this object, acquisition-wrapped in its parent:

f1 = portal['f1']

To make an assertion against an attribute or method of this object:

self.assertEqual(f1.Title(), u"Folder 1")

To modify the object:

f1.setTitle(u"Some title")

To add another item inside the folder f1:

f1.invokeFactory('Document', 'd1', title=u"Document 1")
d1 = f1['d1']

To check if an object is in a container:

self.assertTrue('f1' in portal)

To delete an object from a container:

del portal[‘f1’]

There is no content or workflows installed by default. You can enable workflows:

portal.portal_workflow.setDefaultChain("simple_publication_workflow")

Searching

To obtain the portal_catalog tool:

from Products.CMFCore.utils import getToolByName

catalog = getToolByName(portal, 'portal_catalog')

To search the catalog:

results = catalog(portal_type="Document")

Keyword arguments are search parameters. The result is a lazy list. You can
call len() on it to get the number of search results, or iterate through
it. The items in the list are catalog brains. They have attributes that
correspond to the “metadata” columns configured for the catalog, e.g.
Title, Description, etc. Note that these are simple attributes (not
methods), and contain the value of the corresponding attribute or method from
the source object at the time the object was cataloged (i.e. they are not
necessarily up to date).

To make assertions against the search results:

self.assertEqual(len(results), 1)

Copy the list into memory so that we can use [] notation
results = list(results)

Check the first (and in this case only) result in the list
self.assertEqual(results[0].Title, u"Document 1")

To get the path of a given item in the search results:

self.assertEqual(resuls[0].getPath(), portal.absolute_url_path() + '/f1/d1')

To get an absolute URL:

self.assertEqual(resuls[0].getURL(), portal.absolute_url() + '/f1/d1')

To get the original object:

obj = results[0].getObject()

To re-index an object d1 so that its catalog information is up to date:

d1.reindexObject()

User management

To create a new user:

from Products.CMFCore.utils import getToolByName

acl_users = getToolByName(portal, 'acl_users')

acl_users.userFolderAddUser('user1', 'secret', ['Member'], [])

The arguments are the username (which will also be the user id), the password,
a list of roles, and a list of domains (rarely used).

To make a particular user active (“logged in”) in the integration testing
environment use the login method and pass it the username:

from plone.app.testing import login

login(portal, 'user1')

To log out (become anonymous):

from plone.app.testing import logout

logout()

To obtain the current user:

from AccessControl import getSecurityManager

user = getSecurityManager().getUser()

To obtain a user by name:

user = acl_users.getUser('user1')

Or by user id (id and username are often the same, but can differ in real-world
scenarios):

user = acl_users.getUserById('user1')

To get the user’s user name:

userName = user.getUserName()

To get the user’s id:

userId = user.getId()

Permissions and roles

To get a user’s roles in a particular context (taking local roles into
account):

from AccessControl import getSecurityManager

user = getSecurityManager().getUser()

self.assertEqual(user.getRolesInContext(portal), ['Member'])

To change the test user’s roles:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

setRoles(portal, TEST_USER_ID, ['Member', 'Manager'])

Pass a different user name to change the roles of another user.

To grant local roles to a user in the folder f1:

f1.manage_setLocalRoles(TEST_USER_ID, ('Reviewer',))

To check the local roles of a given user in the folder ‘f1’:

self.assertEqual(f1.get_local_roles_for_userid(TEST_USER_ID), ('Reviewer',))

To grant the ‘View’ permission to the roles ‘Member’ and ‘Manager’ in the
portal root without acquiring additional roles from its parents:

portal.manage_permission('View', ['Member', 'Manager'], acquire=False)

This method can also be invoked on a folder or individual content item.

To assert which roles have the permission ‘View’ in the context of the
portal:

roles = [r['name'] for r in portal.rolesOfPermission('View') if r['selected']]
self.assertEqual(roles, ['Member', 'Manager'])

To assert which permissions have been granted to the ‘Reviewer’ role in the
context of the portal:

permissions = [p['name'] for p in portal.permissionsOfRole('Reviewer') if p['selected']]
self.assertTrue('Review portal content' in permissions)

To add a new role:

portal._addRole('Tester')

This can now be assigned to users globally (using the setRoles helper)
or locally (using manage_setLocalRoles()).

To assert which roles are available in a given context:

self.assertTrue('Tester' in portal.valid_roles())

Workflow

To set the default workflow chain:

from Products.CMFCore.utils import getToolByName

workflowTool = getToolByName(portal, 'portal_workflow')

workflowTool.setDefaultChain('my_workflow')

In Plone, most chains contain only one workflow, but the portal_workflow
tool supports longer chains, where an item is subject to more than one
workflow simultaneously.

To set a multi-workflow chain, separate workflow names by commas.

To get the default workflow chain:

self.assertEqual(workflowTool.getDefaultChain(), ('my_workflow',))

To set the workflow chain for the ‘Document’ type:

workflowTool.setChainForPortalTypes(('Document',), 'my_workflow')

You can pass multiple type names to set multiple chains at once. To set a
multi-workflow chain, separate workflow names by commas. To indicate that a
type should use the default workflow, use the special chain name ‘(Default)’.

To get the workflow chain for the portal type ‘Document’:

chains = dict(workflowTool.listChainOverrides())
defaultChain = workflowTool.getDefaultChain()
documentChain = chains.get('Document', defaultChain)

self.assertEqual(documentChain, ('my_other_workflow',))

To get the current workflow chain for the content object f1:

self.assertEqual(workflowTool.getChainFor(f1), ('my_workflow',))

To update all permissions after changing the workflow:

workflowTool.updateRoleMappings()

To change the workflow state of the content object f1 by invoking the
transaction ‘publish’:

workflowTool.doActionFor(f1, 'publish')

Note that this performs an explicit permission check, so if the current user
doesn’t have permission to perform this workflow action, you may get an error
indicating the action is not available. If so, use login() or
setRoles() to ensure the current user is able to change the workflow
state.

To check the current workflow state of the content object f1:

self.assertEqual(workflowTool.getInfoFor(f1, 'review_state'), 'published')

Properties

To set the value of a property on the portal root:

portal._setPropValue('title', u"My title")

To assert the value of a property on the portal root:

self.assertEqual(portal.getProperty('title'), u"My title")

To change the value of a property in a property sheet in the
portal_properties tool:

from Products.CMFCore.utils import getToolByName

propertiesTool = getToolByName(portal, 'portal_properties')
siteProperties = propertiesTool['site_properties']

siteProperties._setPropValue('many_users', True)

To assert the value of a property in a property sheet in the
portal_properties tool:

self.assertEqual(siteProperties.getProperty('many_users'), True)

Installing products and extension profiles

To apply a particular extension profile:

from plone.app.testing import applyProfile

applyProfile(portal, 'my.product:default')

This is the preferred method of installing a product’s configuration.

To install an add-on product into the Plone site using the
portal_quickinstaller tool:

from plone.app.testing import quickInstallProduct

quickInstallProduct(portal, 'my.product')

To re-install a product using the quick-installer:

quickInstallProduct(portal, 'my.product', reinstall=True)

Note that both of these assume the product’s ZCML has been loaded, which is
usually done during layer setup. See the layer examples above for more details
on how to do that.

When writing a product that has an installation extension profile, it is often
desirable to write tests that inspect the state of the site after the profile
has been applied. Some of the more common such tests are shown below.

To verify that a product has been installed (e.g. as a dependency via
metadata.xml):

from Products.CMFCore.utils import getToolByName

quickinstaller = getToolByName(portal, 'portal_quickinstaller')
self.assertTrue(quickinstaller.isProductInstalled('my.product'))

To verify that a particular content type has been installed (e.g. via
types.xml):

typesTool = getToolByName(portal, 'portal_types')

self.assertNotEqual(typesTool.getTypeInfo('mytype'), None)

To verify that a new catalog index has been installed (e.g. via
catalog.xml):

catalog = getToolByName(portal, 'portal_catalog')

self.assertTrue('myindex' in catalog.indexes())

To verify that a new catalog metadata column has been added (e.g. via
catalog.xml):

self.assertTrue('myattr' in catalog.schema())

To verify that a new workflow has been installed (e.g. via
workflows.xml):

workflowTool = getToolByName(portal, 'portal_workflow')

self.assertNotEqual(workflowTool.getWorkflowById('my_workflow'), None)

To verify that a new workflow has been assigned to a type (e.g. via
workflows.xml):

self.assertEqual(dict(workflowTool.listChainOverrides())['mytype'], ('my_workflow',))

To verify that a new workflow has been set as the default (e.g. via
workflows.xml):

self.assertEqual(workflowTool.getDefaultChain(), ('my_workflow',))

To test the value of a property in the portal_properties tool (e.g. set
via propertiestool.xml)::

propertiesTool = getToolByName(portal, 'portal_properties')
siteProperties = propertiesTool['site_properties']

self.assertEqual(siteProperties.getProperty('some_property'), "some value")

To verify that a stylesheet has been installed in the portal_css tool
(e.g. via cssregistry.xml):

cssRegistry = getToolByName(portal, 'portal_css')

self.assertTrue('mystyles.css' in cssRegistry.getResourceIds())

To verify that a JavaScript resource has been installed in the
portal_javascripts tool (e.g. via jsregistry.xml):

jsRegistry = getToolByName(portal, 'portal_javascripts')

self.assertTrue('myscript.js' in jsRegistry.getResourceIds())

To verify that a new role has been added (e.g. via rolemap.xml):

self.assertTrue('NewRole' in portal.valid_roles())

To verify that a permission has been granted to a given set of roles (e.g. via
rolemap.xml):

roles = [r['name'] for r in portal.rolesOfPermission('My Permission') if r['selected']]
self.assertEqual(roles, ['Member', 'Manager'])

Traversal

To traverse to a view, page template or other resource, use
restrictedTraverse() with a relative path:

resource = portal.restrictedTraverse('f1/@@folder_contents')

The return value is a view object, page template object, or other resource.
It may be invoked to obtain an actual response (see below).

restrictedTraverse() performs an explicit security check, and so may
raise Unauthorized if the current test user does not have permission to
view the given resource. If you don’t want that, you can use:

resource = portal.unrestrictedTraverse('f1/@@folder_contents')

You can call this on a folder or other content item as well, to traverse from
that starting point, e.g. this is equivalent to the first example above:

f1 = portal['f1']
resource = f1.restrictedTraverse('@@folder_contents')

Note that this traversal will not take IPublishTraverse adapters into
account, and you cannot pass query string parameters. In fact,
restrictedTraverse() and unrestrictedTraverse() implement the type of
traversal that happens with path expressions in TAL, which is similar, but not
identical to URL traversal.

To look up a view manually:

from zope.component import getMultiAdapter

view = getMultiAdapter((f1, request), name=u"folder_contents")

Note that the name here should not include the @@ prefix.

To simulate an IPublishTraverse adapter call, presuming the view
implements IPublishTraverse:

next = view.IPublishTraverse(request, u"some-name")

Or, if the IPublishTraverse adapter is separate from the view:

from zope.publisher.interfaces import IPublishTraverse

publishTraverse = getMultiAdapter((f1, request), IPublishTraverse)
next = view.IPublishTraverse(request, u"some-name")

To simulate a form submission or query string parameters:

request.form.update({
 'name': "John Smith",
 'age': 23
 })

The form dictionary contains the marshalled request. That is, if you are
simulating a query string parameter or posted form variable that uses a
marshaller like :int (e.g. age:int in the example above), the value
in the form dictionary should be marshalled (an int instead of a string,
in the example above), and the name should be the base name (age instead
of age:int).

To invoke a view and obtain the response body as a string:

view = f1.restrictedTraverse('@@folder_contents')
body = view()

self.assertFalse(u"An unexpected error occurred" in body)

Please note that this approach is not perfect. In particular, the request
is will not have the right URL or path information. If your view depends on
this, you can fake it by setting the relevant keys in the request, e.g.:

request.set('URL', f1.absolute_url() + '/@@folder_contents')
request.set('ACTUAL_URL', f1.absolute_url() + '/@@folder_contents')

To inspect the state of the request (e.g. after a view has been invoked):

self.assertEqual(request.get('disable_border'), True)

To inspect response headers (e.g. after a view has been invoked):

response = request.response

self.assertEqual(response.getHeader('content-type'), 'text/plain')

Simulating browser interaction

End-to-end functional tests can use zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] to simulate user
interaction. This acts as a web browser, connecting to Zope via a special
channel, making requests and obtaining responses.

Note: zope.testbrowser runs entirely in Python, and does not simulate
a JavaScript engine.

Note that to use zope.testbrowser, you need to use one of the functional
testing layers, e.g. PLONE_FUNCTIONAL_TESTING, or another layer
instantiated with the FunctionalTesting class.

If you want to create some initial content, you can do so either in a layer,
or in the test itself, before invoking the test browser client. In the latter
case, you need to commit the transaction before it becomes available, e.g.:

from plone.app.testing import setRoles
from plone.app.testing import TEST_USER_ID

Make some changes
setRoles(portal, TEST_USER_ID, ['Manager'])
portal.invokeFactory('Folder', 'f1', title=u"Folder 1")
setRoles(portal, TEST_USER_ID, ['Member'])

Commit so that the test browser sees these changes
import transaction
transaction.commit()

To obtain a new test browser client:

from plone.testing.z2 import Browser

browser = Browser(app)

To open a given URL:

portalURL = portal.absolute_url()
browser.open(portalURL)

To inspect the response:

self.assertTrue(u"Welcome" in browser.contents)

To inspect response headers:

self.assertEqual(browser.headers['content-type'], 'text/html; charset=utf-8')

To follow a link:

browser.getLink('Edit').click()

This gets a link by its text. To get a link by HTML id:

browser.getLink(id='edit-link').click()

To verify the current URL:

self.assertEqual(portalURL + '/edit', browser.url)

To set a form control value:

browser.getControl('Age').value = u"30"

This gets the control by its associated label. To get a control by its form
variable name:

browser.getControl(name='age:int').value = u"30"

See the zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] documentation for more details on how to select
and manipulate various types of controls.

To submit a form by clicking a button:

browser.getControl('Save').click()

Again, this uses the label to find the control. To use the form variable
name:

browser.getControl(name='form.button.Save').click()

To simulate HTTP BASIC authentication and remain logged in for all
requests:

from plone.app.testing import TEST_USER_NAME, TEST_USER_PASSWORD

browser.addHeader('Authorization', 'Basic %s:%s' % (TEST_USER_NAME, TEST_USER_PASSWORD,))

To simulate logging in via the login form:

browser.open(portalURL + '/login_form')
browser.getControl(name='__ac_name').value = TEST_USER_NAME
browser.getControl(name='__ac_password').value = TEST_USER_PASSWORD
browser.getControl(name='submit').click()

To simulate logging out:

browser.open(portalURL + '/logout')

Debugging tips

By default, only HTTP error codes (e.g. 500 Server Side Error) are shown when
an error occurs on the server. To see more details, set handleErrors to
False:

browser.handleErrors = False

To inspect the error log and obtain a full traceback of the latest entry:

from Products.CMFCore.utils import getToolByName

errorLog = getToolByName(portal, 'error_log')
print errorLog.getLogEntries()[-1]['tb_text']

To save the current response to an HTML file:

open('/tmp/testbrowser.html', 'w').write(browser.contents)

You can now open this file and use tools like Firebug to inspect the structure
of the page. You should remove the file afterwards.

Comparison with ZopeTestCase/PloneTestCase

plone.testing [http://pypi.python.org/pypi/plone.testing] and plone.app.testing have in part evolved from
ZopeTestCase, which ships with Zope 2 in the Testing package, and
Products.PloneTestCase [http://pypi.python.org/pypi/Products.PloneTestCase], which ships with Plone and is used by Plone itself
as well as numerous add-on products.

If you are familiar with ZopeTestCase and PloneTestCase, the concepts
of these package should be familiar to you. However, there are some important
differences to bear in mind.

	plone.testing and plone.app.testing are unburdened by the legacy
support that ZopeTestCase and PloneTestCase have to include. This
makes them smaller and easier to understand and maintain.

	Conversely, plone.testing only works with Python 2.6 and Zope 2.12 and
later. plone.app.testing only works with Plone 4 and later. If you need
to write tests that run against older versions of Plone, you’ll need to use
PloneTestCase.

	ZopeTestCase/PloneTestCase were written before layers were available
as a setup mechanism. plone.testing is very layer-oriented.

	PloneTestCase provides a base class, also called PloneTestCase,
which you must use, as it performs setup and tear-down. plone.testing
moves shared state to layers and layer resources, and does not impose any
particular base class for tests. This does sometimes mean a little more
typing (e.g. self.layer['portal'] vs. self.portal), but it makes
it much easier to control and re-use test fixtures. It also makes your
test code simpler and more explicit.

	ZopeTestCase has an installProduct() function and a corresponding
installPackage() function. plone.testing [http://pypi.python.org/pypi/plone.testing] has only an
installProduct(), which can configure any kind of Zope 2 product (i.e.
packages in the Products.* namespace, old-style products in a special
Products folder, or packages in any namespace that have had their ZCML
loaded and which include a <five:registerPackage /> directive in their
configuration). Note that you must pass a full dotted name to this function,
even for “old-style” products in the Products.* namespace, e.g.
Products.LinguaPlone instead of LinguaPlone.

	On setup, PloneTestCase will load Zope 2’s default site.zcml. This
in turn will load all ZCML for all packages in the Products.* namespace.
plone.testing does not do this (and you are strongly encouraged from
doing it yourself), because it is easy to accidentally include packages in
your fixture that you didn’t intend to be there (and which can actually
change the fixture substantially). You should load your package’s ZCML
explicitly. See the plone.testing [http://pypi.python.org/pypi/plone.testing] documentation for details.

	When using PloneTestCase, any package that has been loaded onto
sys.path and which defines the z3c.autoinclude.plugin:plone entry
point will be loaded via z3c.autoinclude [http://pypi.python.org/pypi/z3c.autoinclude]‘s plugin mechanism. This loading
is explicitly disabled, for the same reasons that the Products.* auto-
loading is. You should load your packages’ configuration explicitly.

	PloneTestCase sets up a basic fixture that has member folder enabled,
and in which the test user’s member folder is available as self.folder.
The plone_workflow workflow is also installed as the default.
plone.app.testing takes a more minimalist approach. To create a test
folder owned by the test user that is similar to self.folder in a
PloneTestCase, you can do:

import unittest2 as unittest
from plone.app.testing import TEST_USER_ID, setRoles
from plone.app.testing import PLONE_INTEGRATION_TESTING

class MyTest(unitest.TestCase):

 layer = PLONE_INTEGRATION_TESTING

 def setUp(self):
 self.portal = self.layer['portal']

 setRoles(self.portal, TEST_USER_ID, ['Manager'])
 self.portal.invokeFactory('Folder', 'test-folder')
 setRoles(self.portal, TEST_USER_ID, ['Member'])

 self.folder = self.portal['test-folder']

You could of course do this type of setup in your own layer and expose it
as a resource instead.

	To use zope.testbrowser [http://pypi.python.org/pypi/zope.testbrowser] with PloneTestCase, you should use its
FunctionalTestCase as a base class, and then use the following pattern:

from Products.Five.testbrowser import Browser
browser = Browser()

The equivalent pattern in plone.app.testing is to use the
FunctionalTesting test lifecycle layer (see example above), and then
use:

from plone.testing.z2 import Browser
browser = Browser(self.layer['app'])

Also note that if you have made changes to the fixture prior to calling
browser.open(), they will not be visible until you perform an
explicit commit. See the zope.testbrowser examples above for details.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Plone Foundation.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	plone.app.testing 4.2.1 documentation

Index

 Copyright 2013, Plone Foundation.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		plone.app.testing 4.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Plone Foundation.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/comment-bright.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

